

Radiation-Driven Dynamic Target Response for Dissimilar Material Jetting and for Debris Effects in Partitioned Pipes

R. Jeffery Lawrence Sandia National Laboratories Albuquerque, New Mexico, USA

Dissimilar Material Jetting on NOVA and Z

T. A. Mehlhorn, T. A. Haill, K. G. Budge, T. G. Trucano, K. R. Cochrane, J. J. MacFarlane

Debris Effects in Partitioned Pipes

M. D. Furnish, C. A. Hall, J. R. Asay, T. G. Trucano, K. G. Budge

SAND2001-0183P

ALEGRA has unique capabilities for addressing SBSS program issues as well as HEDP problems.

. . . the code combines solid dynamics, fracture, HE, etc., with high-energy features such as MHD and radiation transport.

Dissimilar Material Jetting on NOVA and Z

R. J. Lawrence,

can be studied on Z.

Target

Anode

- T. A. Mehlhorn, T. A. Haill,
- K. G. Budge, T. G. Trucano,
- K. R. Cochrane, J. J. MacFarlane

The NOVA experiments used radiation from a short-pulse, high-power, laser-driven hohlraum.

Z-pinch and Target Theory Department

The experiment used a laserdriven NOVA hohlraum to expose the sample to a short high-intensity radiation load. The sample response was observed with an x-ray backlighter. The radiation drive was a blackbody temperature history peaking at ~190 eV with a FWHM pulse width of ~5 ns.

Aluminium 'pin'

Converging shocks

Gold 'washer'

Polystyrene

Shock in polystyrene

The target configuration consisted of a 150-μm-long aluminum "pin" in a 50-μm-thick gold "washer," which was backed with a 380-μm-diameter polystyrene block.

The configuration used for the ALEGRA calculations employed an Al "pin" mounted in an Au "washer."

Z-pinch and Target Theory Department

- For the NOVA problem, the thickness of the aluminum "pin" was 150 μm, the gold washer thickness was 50 μm, and the polystyrene backing had a diameter of 380 μm.
- We used a 2-D cylindrical Eulerian mesh with: 1) 4,500 elements (10-μm resolution); and 2) 18,000 elements (5-μm resolution).
- The radiation, incident from the top, was treated with singlegroup, SN₁ radiation transport, with radiation pressure disabled.

For NOVA, fine resolution calculations show more detail and slightly faster on-axis jet motion.

SPECT3D produces simulations of detector images from ALEGRA rad/hydro output.

Z-pinch and Target Theory Department -

Coarse resolution calculation ——

Fine resolution calculation

For this configuration the ALEGRA results are consistent with other codes and the experiment.

Z-pinch and	Target	Theory	Department
-------------	---------------	--------	------------

Spatial characterization of aluminum jet (Revised configuration – coarse mesh): [Axial position of leading edge (μm)]					
Code	ALEGRA (Eulerian)	PETRA (Eulerian)	CALE (ALE)	RAGE (AMR)	Experiment (Estimated)
Time = 6 ns	265	245	300	280	~260
Time = 9 ns	380	345	405	380	300+
Time = 12 ns	460	_	_	-	_

- At a computational time of 6 ns, ALEGRA predicts the on-axis jet location within about 2% of the estimated experimental result; this result is also consistent with the other computational efforts.
- At a time of 9 ns the predicted axial location of the jet is somewhat over 20% greater than the estimated experimental measurement; but as with the earlier time, it agrees very closely with the average of the other code results.

We are now studying the scaling of these RadJet experiments from NOVA to Z.

Typical Source Characteristics **Peak temperature: NOVA** ~190 eV ~162 eV **FWHM** pulse width: NOVA ~5 ns ~50 ns **Peak power:** $P_{MAX}(Z)/P_{MAX}(NOVA) \approx 1/2$ **Total energy fluence:** $\Phi_{TOT}(Z)/\Phi_{TOT}(NOVA) \approx 3$

- Similar mechanical behavior should be obtained by scaling the physical dimensions by about a factor of ten.
- However, the radiation transport will not scale in a similar fashion.
- Source for Z can be modified.

Integrating the temperature curves allows the fluences to be compared.

Z-pinch and Target Theory Department -

The Z experiments would use a longer pulse, but a higher energy Z-pinch-driven hohlraum.

Z-pinch and Target Theory Department

- The target could be placed in either the primary or a secondary hohlraum.
- Principal diagnostics would involve the Z-Beamlet Backlighter that is presently under construction.

There are several points that should be noted with regard to the calculations.

Z-pinch and Target Theory Department -

- The quoted half-max pulse widths are only approximate, but lead to about a factor of ten difference in characteristic response times.
- In these calculations the physical dimensions are scaled by exactly a factor of ten for the two cases.
- Because the radiation transport phenomena (e.g., opacities) do not scale in the same manner as the hydrodynamic behavior, the total response will not be directly homologous.
- The calculations were run with ALEGRA, using 10-μm resolution for the NOVA case and 100-μm resolution for the Z configuration.
- Because of the initial slow rise for the radiation drive from Z, the times cannot be shifted in a directly proportional fashion; the comparison plots were chosen for similar stages in the evolution of the response.

The RadJet problem at very early times, with the shock part way through the "pin" . . .

Z-pinch and Target Theory Department

RadJet / NOVA:

RadJet / Z:

The RadJet problem at early times, at about the time of shock breakout...

Z-pinch and Target Theory Department -

RadJet / NOVA:

RadJet / Z:

The RadJet problem at medium time, after the "jet" is relatively well formed . . .

Z-pinch and Target Theory Department

RadJet / NOVA:

RadJet / Z:

At later times the problems are still similar, and the jet is well into the polystyrene backing.

Z-pinch and Target Theory Department -

RadJet / NOVA:

RadJet / Z:

By late times, the differences due to lack of radiation "scaling" are considerably more evident.

Z-pinch and Target Theory Department

RadJet / NOVA:

RadJet / Z:

Temperatures and pressures show much larger differences than the densities.

Z-pinch and Target Theory Department -

RadJet / NOVA:

'T' --
$$T_{max} \cong 130 \text{ eV}$$
 'P' -- $P_{max} \cong 30 \text{ Mb}$

RadJet / Z:

At much later times there are significant differences, but many qualitative features are similar.

Z-pinch and Target Theory Department

RadJet / NOVA:

'T' -- $T_{max} \cong 70 \text{ eV}$ 'P' -- $P_{max} \cong 4 \text{ Mb}$

RadJet / Z:

$$\label{eq:Taylor} \begin{tabular}{ll} \begin$$

The Z-Beamlet Backlighter (ZBL) is scheduled to begin operation on Z in early 2001.

Z-pinch and Target Theory Department

- Construction of the ZBL building began in March 1999.
- Construction of the ZBL building was completed in October 1999.
- The front end activation was completed in February 2000.

(1)

The ZBL will be an important new diagnostic tool for high energy density physics experiments on Z.

Z-pinch and Target Theory Department

Measurements possible with a backlighter:

- Material T_e and n_e
- Magnetic Rayleigh-Taylor growth rate
- Absorption spectrum
- Capsule implosion symmetry
- Material interface motion
- Particle velocity and shock density
- Instability mix region

2 TW laser backlighter on Z --

- Capabilities include both point projection and area backlighting.
- We will have spatial resolution of 25 µm at 9 keV x-ray probe energy.

We are using SPECT3D to visualize the use of the Z-Beamlet Backlighter (ZBL) on these experiments.

Z-pinch and Target Theory Department

- The amplitude of each cell represents the optical depth through the jet as a function of axial position (Y) and offset from the axis (X).
- Overall, ZBL performance depends on photon energy, conversion efficiency, and other issues.
- This plot is taken from the 100-μm resolution RadJet / Z calculation at a time of 330 ns.
- For this example the backlighter energy was chosen as 3 keV, but the jet is probably too thick to "see" through.

At late times and 10 keV, we get optical depths of order unity, which implies experiment is feasible.

Z-pinch and Target Theory Department

Backlighter photon energy: hv = 10 keV

 $t = 528 \, ns$

Simulations of detector output from the scaled-up Z runs show all major features.

Z-pinch and Target Theory Department

- These images were generated with hv = 10 keV.
- Features evident in the radiographs include the polystyrene backing block, the shock wave in the polystyrene, and details of the aluminum jet in the plastic.
- Details of the blowoff moving back into the hohlraum are also evident, but would not be recorded in the experimental radiograph.

 $t = 528 \, ns$

We have studied the generation and evolution of radiation-driven jets on both NOVA and Z.

Z-pinch and Target Theory Department -

- The NOVA experiments, in conjunction with the other calculations, have provided validation for the ALEGRA modeling and analyses.
- In comparison with the results from NOVA, physical scaling-up of the configuration and using the Z-pinch machine produces similar, although not identical, phenomenology.
- Using the ZBL backlighter for diagnostic measurements appears to be feasible for the scaled-up configuration.
 - > At late times and for high photon energies, optical depths are of order unity.
- Next steps and other possibilities:
 - > Use finer zoning for ALEGRA calculations;
 - > Use more realistic and representative ZBL spectra;
 - > Modify Z source to obtain different conditions (e.g., higher temperatures via dynamic hohlraum, multiple and/or colliding jets);
 - > Examine different configurations of interest, or other degrees of physical scale-up.

Debris Effects in Partitioned Pipes

This experiment is being used to study pipe and debris phenomenology using Z and ALEGRA.

Z-pinch and Target Theory Department

VISAR Probes

Strain Gauges

Z-Pinch

Partitions

X-ray Input

- Well-characterized radiation environments
- Two configurations -- 10 cm and 5 cm long x ~1 cm
- Multiple shock diagnostics
- Real-time debris generation and barrier failure

Strategic Intent:

- Show new capability for Z and Z-pinch in weapon-related applications;
- Demonstrate capabilities and expertise of interest to other agencies;
- Develop new techniques and diagnostics for future applications, and new areas for ASCI code validation with ALEGRA.

This slotted-can hohlraum configuration is being used for the partitioned-pipe experiments.

Z-pinch and Target Theory Department -

The actual long-pipe sample shows the strain gauges and the attached VISAR probes.

Z-pinch and Target Theory Department -

Strain gauges

Connections for VISAR probes

The experiment was successful, and VISAR data was recorded for all three partitions.

Z-pinch and Target Theory Department -

Model target assembly mounted in Z

Tunnel model in experimental fixture

Post-shot

Pre-shot

01/29/2001 • rjl asci/alegra; 31

Recovered short pipe provides evidence of response and confirmation of code simulations.

Velocity measurements functioned well, and data were obtained for all partitions.

Z-pinch and Target Theory Department Long Pipe Partition Velocity (km/s) Rear partition **Front** Middle partition partition Center 0.1 -0.5 1.5 2.5 mm off-center 0.05 -0.250.5 0.2 0.4 16 17 18 20 25 30 35 Time (µs after pinch)

However, the data do show significant scatter, indicating the variable nature of the phenomena.

Z-pinch and Target Theory Department -**Short Pipe** 2.5 cm Pinch cm Partition Velocity (km/s) Rear partition Front partition Middle partition 0.5 Center 0.1 2.5 mm from center 0.25 0.05 0.5 0.2 0.4 20 10 Time (µs after pinch)

We are using ALEGRA for 2-D Eulerian simulations (post-shot) of the partitioned-pipe response.

The measured output from the Z pinch is being used as input to the post-shot calculations.

Z-pinch and Target Theory Department

- The pre-shot estimate was a 40-ns wide triangular pulse peaking at ~150 eV.
- The measured output has a peak temperature of ~162 eV, with the indicated time dependence.
- Geometric factors restrict the on-target fluence to about 3.3 percent of an equivalent hohlraum at the pinch temperature.
- Radiation transport used single-group diffusion; probably adequate for this problem.

Post-shot calculations were performed with measured radiation input and E-P mat'l response.

Z-pinch and Target Theory Department

The long-pipe calculation shows penetration of the middle barrier at ~13 μ s and penetration of the rear barrier at ~36 μ s. In both problems the debris is strongly peaked toward the axis.

The short-pipe calculation shows penetration of the middle barrier at ~7 μ s, and penetration of the rear barrier at ~20 μ s. In both cases the stress waves in the tunnel walls precede the debris by roughly a factor of two in time.

ALEGRA calculations show numerical simulations for pressure histories along pipe wall.

Z-pinch and Target Theory Department

- These calculated pressure histories are for points half-way through the thickness of the pipe wall at the indicated positions.
- The walls and inner partitions were modeled as elasticplastc materials.
- Note the effects of the debris impacts on the traces for partitions 2 and 3.
- The midpoint traces do not show these debrisimpact signals.

Velocities for the rear barrier show the effects of both the stress waves in the pipe wall and the debris.

Z-pinch and Target Theory Department

- The signals from the stress waves in the pipe wall preceding the debris can be seen at both ~20 and ~25 μs; the debris impact on this barrier occurs at ~34 μs.
- The calculated rearsurface velocities are relatively low, with a maximum value a little over 0.7 km/s; they are still strongly peaked toward the axis.

Comparison between experiment and calculation gives only qualitative agreement.

Z-pinch and Target Theory Department -

	1	

Partition ↓	Arrival Time (µs)		Partition Vel. (km/s)		
	Toe	Main	VISAR Precursor	VISAR Main	To next partition
Front					2.95
On-Axis		0.15		3.9	3.94
Front	0.06	0.15	0.07	2.3	2.88
Off-Axis		0.15		3.9	3.78
Middle	12.38	17.09	0.035	0.45	
On-Axis		13.0		1.7	2.40
Middle	9.33	17.50	0.076	0.45	6.3?
Off-Axis		13.5		0.2	2.40
Rear On-	Not Meas.	Not Meas.	Not Meas.	Not Meas.	N. A.
Axis	22.5	36	0.04	0.48	
Rear	21.16	~25?	~0.01	>0.1	N. A.
Off-Axis	22.5	36	0.04	0.08	

Long Pipe

Black = Experiment

Red = Calculation

- Times are shifted to superimpose front-barrier peak particle velocity arrival times.
- Calculations suggest debris is strongly peaked on axis; middle door velocity measurements suggest asymmetry.
- Sectioned short-tunnel shows remaining "door stubs" that are consistent with broad range of debris velocities across tunnel diameter.

Source temperatures of 100 eV and 55 eV show qualitatively different response phenomenology.

Z-pinch and Target Theory Department

The debris consists of only low-velocity, high-density material -- the second barrier is penetrated at ~21 μ s. The pressure waves precede the debris-generated signals by nearly a factor of two.

 $T_{max} = 55 \text{ eV}; \quad \Phi_{55} \approx \Phi_{100}/11;$ 40-ns-wide triangular pulse.

Note high-velocity, low-density debris cloud followed by lower-velocity, higher-density material -- the former penetrates the second barrier at \sim 6 μ s, well ahead of any direct pressure waves in the pipe wall.

 $T_{max} = 100 \text{ eV}; \quad \Phi_{100} \approx 11 \Phi_{55};$ 40-ns-wide triangular pulse.

Overall conclusions . . .

Z-pinch and Target Theory Department -

- For the radiation-driven jet problem:
 - > Validation for the ALEGRA models has been achieved through comparison with the NOVA experiment and other calculations.
 - > Experiments scaled up by an order of magnitude on Z show qualitatively similar dynamic response phenomenology.
 - > Diagnostics with ZBL are feasible for the scaled-up experiments.
- For the partitioned pipe experiment:
 - > Qualitatively different response phenomenology results from variations in loading conditions.
 - > Measured velocity histories were not well matched, but discrepancies may be due to uncertainties in radiation environment.
 - > ALEGRA was used in a predictive mode to help with experimental design, and new applied capabilities for both Z and ALEGRA have been demonstrated.
- The ASCI code ALEGRA is under continuing development, but is being used routinely to address practical issues associated with experimental design and applied system-level response.

